130 research outputs found

    X-Rays from the Nearby Solitary Millisecond Pulsar PSR J0030+0451 - the Final ROSAT Observations

    Get PDF
    We report on X-ray observations of the solitary 4.8 ms pulsar PSR J0030+0451. The pulsar was one of the last targets observed in DEC-98 by the ROSAT PSPC. X-ray pulses are detected on a 4.5σ4.5\sigma level and make the source the 11th11^{th} millisecond pulsar detected in the X-ray domain. The pulsed fraction is found to be 69±1869\pm18%. The X-ray pulse profile is characterized by two narrow peaks which match the gross pulse profile observed at 1.4 GHz. Assuming a Crab-like spectrum the X-ray flux is in the range fx=2−3×10−13f_x= 2-3\times 10^{-13} erg s−1^{-1} cm−2^{-2} (0.1−2.40.1-2.4 keV), implying an X-ray efficiency of Lx/E˙∌0.5−5×10−3(d/0.23kpc)2L_x/\dot{E}\sim 0.5-5 \times 10^{-3} (d/0.23 {kpc})^2.Comment: Accepted for publication in Ap

    Calibration of Low-Frequency, Wide-Field Radio Interferometers Using Delay/Delay-Rate Filtering

    Full text link
    We present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delay-rate images." Source selection is possible in these images given appropriate combinations of baseline, bandwidth, integration time and source location. Strong and persistent radio frequency interference (RFI) limits the effectiveness of this source selection owing to the removal of data by RFI excision algorithms. A one-dimensional, complex CLEAN algorithm has been developed to compensate for RFI-excision effects. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to data from the Precision Array for Probing the Epoch of Reionization (PAPER) as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view.Comment: 17 pages, 6 figures, 2009AJ....138..219

    Space VLBI Observations Show Tb>1012KT_b > 10^{12} K in the Quasar NRAO 530

    Get PDF
    We present here space-based VLBI observations with VSOP and a southern hemisphere ground array of the gamma-ray blazar NRAO 530 at 1.6 GHz and 5 GHz. The brightness temperature of the core at 1.6 GHz is 5×10115 \times 10^{11} K. The size is near the minimum observable value in the direction of NRAO~530 due to interstellar scattering. The 5 GHz data show a single component with a brightness temperature of ∌3×1012\sim 3 \times 10^{12} K, significantly in excess of the inverse Compton limit and of the equipartition brightness temperature limit (Readhead 1994). This is strong evidence for relativistic motion in a jet requiring model-dependent Doppler boosting factors in the range 6 to 60. We show that a simple homogeneous sphere probably does not model the emission region accurately. We favor instead an inhomogeneous jet model with a Doppler boosting factor of 15.Comment: 12 pages, 2 figures. Accepted for publication in ApJ Letter

    A New Class of Pulsars

    Get PDF
    In 1939, seven years after the discovery of the neutron, nuclear physicists constructed the first models of a "neutron star." Stable results were found with masses comparable to the Sun's radii of about 10 km. Binary pulsars, pulsars with millisecond periods and pulsars in globular clusters are distinguished by their evolutionary histories, and are providing tools for fundamental tests of physics

    Variable Linear Polarization from Sagittarius A*: Evidence for a Hot Turbulent Accretion Flow

    Get PDF
    We report the discovery of variability in the linear polarization from the Galactic Center black hole source, Sagittarius A*. New polarimetry obtained with the Berkeley-Illinois-Maryland Association array at a wavelength of 1.3 mm shows a position angle that differs by 28 +/- 5 degrees from observations 6 months prior and then remains stable for 15 months. This difference may be due to a change in the source emission region on a scale of 10 Schwarzschild radii or due to a change of 3 x 10^5 rad m^-2 in the rotation measure. We consider a change in the source physics unlikely, however, since we see no corresponding change in the total intensity or polarized intensity fraction. On the other hand, turbulence in the accretion region at a radius ~ 10 to 1000 R_s could readily account for the magnitude and time scale of the position angle change.Comment: accepted for publication in ApJ

    Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A*

    Get PDF
    We report here the detection of circular polarization in the Galactic Center black hole candidate, Sagittarius A*. The detection was made at 4.8 GHz and 8.4 GHz with the Very Large Array. We find that the fractional circular polarization at 4.8 GHz is mc=−0.36±0.05m_c=-0.36 \pm 0.05% and that the spectral index of the circular polarization is α=−0.6±0.3\alpha=-0.6 \pm 0.3 (mc∝Μαm_c \propto \nu^{\alpha}). The systematic error in mcm_c is less than 0.04% at both frequencies. In light of our recent lower limits on the linear polarization in Sgr A*, this detection is difficult to interpret with standard models. We consider briefly whether scattering mechanisms could produce the observed polarization. Detailed modeling of the source and the scattering medium is necessary. We propose a simple model in which low energy electrons reduce linear polarization through Faraday depolarization and convert linear polarization into circular polarization. Circular polarization may represent a significant new parameter for studying the obscured centimeter wavelength radio source in Sgr A*.Comment: ApJL accepted, 11 pages including 1 figur

    A Micro-glitch in the Millisecond Pulsar B1821-24 in M28

    Full text link
    We report on the observation of a very small glitch observed for the first time in a millisecond pulsar, PSR B1821-24 located in the globular cluster M28. Timing observations were mainly conducted with the Nancay radiotelescope (France) and confirmation comes from the 140ft radiotelescope at Green Bank and the new Green Bank Telescope data. This event is characterized by a rotation frequency step of 3 nHz, or 10^-11 in fractional frequency change along with a short duration limited to a few days or a week. A marginally significant frequency derivative step was also found. This glitch follows the main characteristics of those in the slow period pulsars, but is two orders of magnitude smaller than the smallest ever recorded. Such an event must be very rare for millisecond pulsars since no other glitches have been detected when the cumulated number of years of millisecond pulsar timing observations up to 2001 is around 500 for all these objects. However, pulsar PSR B1821-24 is one of the youngest among the old recycled ones and there is likely a correlation between age, or a related parameter, and timing noise. While this event happens on a much smaller scale, the required adjustment of the star to a new equilibrium figure as it spins down is a likely common cause for all glitches.Comment: Accepted by ApJ Letters, 5 pages, 2 figures, LaTex (uses emulateapj.sty

    The Linear Polarization of Sagittarius A* I. VLA Spectro-polarimetry at 4.8 and 8.4 GHz

    Full text link
    Synchrotron radiation from active galactic nuclei (AGN) is often highly polarized. We present a search for linear polarization with the Very Large Array (VLA) at 4.8 GHz and 8.4 GHz from the nearest AGN, Sagittarius A*. As a part of this study we used spectro-polarimetric data that were sensitive to a rotation measure (RM) as large as 3.5 x 10^6 rad m^-2 at 4.8 GHz and 1.5 x 10^7 rad m^-2 at 8.4 GHz. The upper limit to the linear polarization of Sgr A* over a broad range of RM is 0.2% at both frequencies. We also present continuum observations with the VLA at 4.8 GHz which give an upper limit of 0.1% for RMs less than 10^4 rad m^-2. We conclude that depolarization is unlikely to occur in the Galacter Center scattering medium. However, it is possible for depolarization to occur in the accretion region of Sgr A* if the outer scale of turbulence is small enough. We also consider the implications of a very low intrinsic polarization for Sgr A*.Comment: 16 pages, 3 figures, accepted for publication in the Astrophysical Journal, August 20, 1999, Vol 521 #

    The Rotation Measure and 3.5mm Polarization of Sgr A*

    Get PDF
    We report the detection of variable linear polarization from Sgr A* at a wavelength of 3.5mm, the longest wavelength yet at which a detection has been made. The mean polarization is 2.1 +/- 0.1% at a position angle of 16 +/- 2 deg with rms scatters of 0.4% and 9 deg over the five epochs. We also detect polarization variability on a timescale of days. Combined with previous detections over the range 150-400GHz (750-2000 microns), the average polarization position angles are all found to be consistent with a rotation measure of -4.4 +/- 0.3 x 10^5 rad/m^2. This implies that the Faraday rotation occurs external to the polarized source at all wavelengths. This implies an accretion rate ~0.2 - 4 x 10^-8 Msun/yr for the accretion density profiles expected of ADAF, jet and CDAF models and assuming that the region at which electrons in the accretion flow become relativistic is within 10 R_S. The inferred accretion rate is inconsistent with ADAF/Bondi accretion. The stability of the mean polarization position angle between disparate polarization observations over the frequency range limits fluctuations in the accretion rate to less than 5%. The flat frequency dependence of the inter-day polarization position angle variations also makes them difficult to attribute to rotation measure fluctuations, and suggests that both the magnitude and position angle variations are intrinsic to the emission.Comment: Ap.J.Lett. accepte
    • 

    corecore